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Abstract: Moving least squares(MLS) is a common method of data fitting, and it has a high degree 
of flexibility and precision that is significantly better than other fitting methods. This paper 
introduces the principle of MLS, enumerates the important research progress in recent years at 
home and abroad, and analyzes the advantages of the method applied in data fitting tasks. MLS also 
has problems such as susceptibility equations, support domain and weight function selection relying 
on empirical judgment. The researchers put forward some strategies for the problem, but they have 
not solved it fundamentally. For the future research direction, this paper suggests that the 
researchers should study in depth from the mathematical theory, convergence, error analysis and 
performance comparison of MLS method and its improved methods. 

1. Introduction 
Whether in engineering or social science research, researchers always encounter mathematical 

model construction problems based on real data. It is hoped that the mathematical model can be 
used to extract some features behind the appearance of the image, even the essence of the data that 
is, fitting the real data to obtain a fitting function that can reflect the characteristics of the data. 
Generally speaking, the data obtained through measurement, statistics and other methods naturally 
have certain errors, and the various expression methods have different ability to express the error, 
which will directly affect the accuracy of the data characteristics reflected by the fitting function[1]. 

The most common method of data fitting is the least squares(LS) fitting method, which is a 
meshless method that finds the best function match for the data by minimizing the sum of the 
squares of the errors. There are some problems in LS fitting method, including the fitting result is 
too dependent on the establishment of the fitting function, and the ill-posed equation is easy to be 
generated in the solution [2]. In order to overcome these problems, some scholars have made 
technical improvements. The moving least squares(MLS) method is one of the improved methods, 
which has far better fitting flexibility than LS method. MLS is widely supported in data fitting and 
meshless methods because it has good mathematical theory and inherits the advantages of least 
squares fitting numerical precision. 

2. Principle of MLS 
MLS method is mainly divided into a MLS approximation method and a MLS interpolation 

method. MLS method has two major improvements compared to the least squares method[3]: First, 
MLS does not use polynomials or other nonlinear functions as fitting functions. The fitting function 
is composed with a basis function p(x) and a coefficient vector α(x). Where α(x) is a function of the 
known node x, and different basis functions can be used to obtain different fitting precisions. 
Secondly, MLS method introduces the concept of compact branching, that is, the value y at the 
point x is considered to be affected only by the nodes in the subdomain near the point x, which is 
called the support domain or the influence region of the point x. Supporting nodes outside the 
domain has no effect on the value of x. nodes which outside the supporting domain has no effect on 
the value of x. The weight function w(d) is defined on the support domain, indicating the size of the 
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x affected by the nodes in the supported domain. The setting of the weight function and the support 
domain range during the fitting process will affect the smoothness of the fitted curve or surface. If 
the weight function is taken as a constant in the entire node region, MLS method degenerates to LS 
method. 

2.1 MLS Approximation 
Set the fitting function f(x) of the fitted region to:  

    𝑓𝑓(𝑥𝑥) =  ∑ 𝑝𝑝𝑖𝑖(𝑥𝑥) ∙ 𝑎𝑎𝑖𝑖(𝑥𝑥) = pT(𝑥𝑥) ∙ 𝛼𝛼(𝑥𝑥)𝑚𝑚
𝑖𝑖=1           (1) 

In the above formula, p(𝑥𝑥)T =  [𝑝𝑝1(𝑥𝑥), 𝑝𝑝2(𝑥𝑥),𝑝𝑝3(𝑥𝑥), … ,𝑝𝑝𝑚𝑚(𝑥𝑥)] is basis function, m is order of 
the basis function, α(𝑥𝑥) = [𝑎𝑎1(𝑥𝑥),𝑎𝑎2(𝑥𝑥),𝑎𝑎3(𝑥𝑥), … ,𝑎𝑎𝑚𝑚(𝑥𝑥)]𝑇𝑇 is coefficient vector. The coefficient is 
only related to the coordinates of node x. For the accuracy of the fitting results, we can set different 
basis functions, such as: For one-dimensional areas: 

Linear basis function                  p(𝑥𝑥)T = [1, 𝑥𝑥] 
Second order basis function       p(𝑥𝑥)T = [1, 𝑥𝑥 , 𝑥𝑥2] 
For two-dimensional areas: 
Linear basis function                  p(𝑥𝑥)T = [1, 𝑥𝑥1 , 𝑥𝑥2] 
Second order basis function     

p(𝑥𝑥)T = [1, 𝑥𝑥1 , 𝑥𝑥2 , 𝑥𝑥12, 𝑥𝑥22, 𝑥𝑥1 ∙ 𝑥𝑥2] 
For nodes in the fitted region such as [𝑥𝑥1 , 𝑥𝑥2 , … , 𝑥𝑥𝑛𝑛], calculate the squared term of the error 

about each true value and the fitted value , and multiply the corresponding weight to obtain the 
objective function of MLS approximation in the point x support domain: 

𝐽𝐽 =  ∑ 𝑤𝑤(𝑥𝑥 − 𝑥𝑥𝑙𝑙)[𝑓𝑓(𝑥𝑥) − 𝑦𝑦𝑙𝑙]2𝑛𝑛
𝑙𝑙=1 = ∑ 𝑤𝑤(𝑥𝑥 − 𝑥𝑥𝑙𝑙)[pT(𝑥𝑥) ∙ 𝛼𝛼(𝑥𝑥) − 𝑦𝑦𝑙𝑙]2𝑛𝑛

𝑙𝑙=1  (2) 

Where n is the number of nodes in the support domain, x is the node coordinate to be sought, 
𝑓𝑓(𝑥𝑥) is the fitting function, 𝑦𝑦𝑙𝑙 is the node value at 𝑥𝑥 = 𝑥𝑥𝑙𝑙, and 𝑤𝑤(𝑥𝑥 − 𝑥𝑥𝑙𝑙) is the weight of node 𝑥𝑥𝑙𝑙 in 
the current support domain. To find the coefficient α(x), we need to derive the formula (2), namely: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= (∑ 𝑤𝑤(𝑥𝑥 − 𝑥𝑥𝑙𝑙)p(𝑥𝑥𝑙𝑙𝑛𝑛
𝑙𝑙=1 )p𝑇𝑇(𝑥𝑥𝑙𝑙)) ∙ 𝛼𝛼(𝑥𝑥) − [𝑤𝑤(𝑥𝑥 − 𝑥𝑥1), … ,𝑤𝑤(𝑥𝑥 − 𝑥𝑥𝑛𝑛)] ∙ [𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦𝑛𝑛]  (3) 

Find the minimum value of the derivative function, it can get: 

(∑ 𝑤𝑤(𝑥𝑥 − 𝑥𝑥𝑙𝑙)p(𝑥𝑥𝑙𝑙𝑛𝑛
𝑙𝑙=1 )p𝑇𝑇(𝑥𝑥𝑙𝑙)) ∙ 𝛼𝛼(𝑥𝑥) − [𝑤𝑤(𝑥𝑥 − 𝑥𝑥1), … ,𝑤𝑤(𝑥𝑥 − 𝑥𝑥𝑛𝑛)] ∙ [𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛] = 0   (4)  

𝛼𝛼(𝑥𝑥) = (∑ 𝑤𝑤(𝑥𝑥 − 𝑥𝑥𝑙𝑙)p(𝑥𝑥𝑙𝑙𝑛𝑛
𝑙𝑙=1 )p𝑇𝑇(𝑥𝑥𝑙𝑙))−1 ∙ [𝑤𝑤(𝑥𝑥 − 𝑥𝑥1), … ,𝑤𝑤(𝑥𝑥 − 𝑥𝑥𝑛𝑛)] ∙ [𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛]       (5) 

Substituting equation (5) into equation (1), the fitted value of the solution node can be obtained. 

2.2 MLS Interpolation 
Data fitting with interpolation conditions requires that the fit function must pass through some of 

the nodes for a given discrete data point. The following MLS interpolation fitting method is given 
in REFERENCE [4]: 

Assuming that the interpolation condition is (𝑥𝑥𝑠𝑠, 𝑦𝑦𝑠𝑠),s = {1,2,3, … , t} ⊆ {1,2,3, … , n}, then MLS 
interpolation fit function is 

               𝐹𝐹(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) − ∑ 𝑘𝑘𝑠𝑠(𝑥𝑥)𝛽𝛽𝑠𝑠𝑡𝑡
𝑠𝑠=1                     (6) 

Where 𝑓𝑓(𝑥𝑥)  is MLS approximation fitting function formula (1),  𝑘𝑘𝑠𝑠(𝑥𝑥) = ∏ (𝑥𝑥−𝑥𝑥𝑗𝑗)
(𝑥𝑥𝑠𝑠−𝑥𝑥𝑗𝑗)

𝑡𝑡
𝑗𝑗=1
𝑠𝑠≠𝑗𝑗

, 𝛽𝛽𝑠𝑠 =

 𝑓𝑓(𝑥𝑥𝑠𝑠) − 𝑦𝑦𝑠𝑠. 
In fact, this interpolation method is based on the approximation method, and the fitting value of 

the interpolation point is corrected, so that the fitting value of the interpolation point is the same as 
the real value. It is found that MLS interpolation method has higher precision than the 
approximation method. When the interpolation method is applied to form the shape function of the 
meshless method, the advantage that the preset boundary condition can be directly applied to the 
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fitting process is obtained. However, it is obvious that the interpolation method is more 
computationally intensive than the approximation method, and it is necessary to evaluate this cost in 
actual use[5]. 

2.3 Weight Function 

The weight function plays a crucial role in MLS method. The weight function 𝑤𝑤(𝑑𝑑) in MLS 
method is non-negative, and 𝑤𝑤(𝑑𝑑) is always greater than 0 when the known node is in the support 
domain, and all outside the support domain is 0. Generally, the circular range is selected as the 
support domain, and the radius is denoted by r. In the weight function, 𝑑𝑑 = ||𝑥𝑥−𝑥𝑥𝑖𝑖||2

𝑟𝑟
 is generally set, 

where x is the coordinate of the point to be determined, and 𝑥𝑥𝑖𝑖 is the coordinates of a known node. 
𝑤𝑤(𝑑𝑑) monotonically decreases with the increase of d, and 𝐶𝐶1 order is continuous in the support 
domain. 

A commonly used weight function is a spline function, such as a cubic spline function: 

 𝑤𝑤(𝑑𝑑) = �

2
3
− 4𝑑𝑑2 + 𝑑𝑑3                          𝑑𝑑 ≤ 1

2
4
3
− 4𝑑𝑑 + 4𝑑𝑑2 − 4

3
𝑑𝑑3             1

2
< 𝑑𝑑 ≤ 1

             0                                     𝑑𝑑 > 1

           (7) 

3. Research Status of MLS 
In 1981, Lancaster et al. generalized LS method and proposed MLS approximation and MLS 

interpolation, which were first applied to surface fitting. After years of development, MLS method 
has extended more and wider research directions and applications, including MLS improved 
method, MLS method and other meshless methods, and image deformation processing. 

For data fitting and meshless methods, MLS method develops more rapidly. Ni Hui et al. 
proposed a new MLS fitting method with interpolation conditions. This method adds corrections 
based on the MLS approximation method. Compared with the improvement, the fitting results are 
better.  

Cheng Yumin et al. [6] studied the proposed complex variable MLS method for the two-
dimensional data fitting problem. This method reduces the undetermined coefficients in the fitting 
process, and thus greatly reduces the need for the number of nodes in the tightly supported domain. 
The utility model has the advantages of less matching points, high precision and fast calculation 
speed, and is not easy to form an ill-posed equation group. Sun Xinzhi specifically analyzed the 
approximate error for the complex variable MLS method [7]. 

Ren Hongping proposed a new method to derive MLS method[8]. This study deduced MLS 
interpolation method from the perspective of inner product and established an improved MLS 
interpolation method. The improved formula is simpler than Lancaster's formula and improves 
computational efficiency. 

Yang Jianjun et al. carried out a series of studies, and finally proved that the interpolation 
precision of MLS normal function is related to the shape of the weight function, the size of the 
support domain, the form of the basis function and the density of the interpolation points[9]. In 
addition, the problem of whether the coefficient vector should participate in the derivative operation 
when MLS method is applied to the meshless method is discussed[10]. The discussion and numerical 
test are carried out. The conclusion is that the coefficient vector participates in the derivative 
operation and has no advantage for the solution effect. There are a number of potential problems in 
the strong meshless method, suggesting that the coefficient vector should not participate in the 
derivative operation. 

Liu Jun[11] used a large number of simulation examples to study the curve and surface fitting and 
interpolation of MLS method. He calculated the influence of the distribution degree of scatter data, 
the size of the tight support domain, the selection form of the weight function, the form of the basis 
function on the accuracy of fitting and interpolation, and the convergence. And some solutions are 
proposed on how to improve and improve the accuracy of fitting and interpolation near the 
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boundary. 
Wei Yifu et al. [12] changed the two norm used in the traditional support domain to the elliptical 

norm, indirectly increasing the weight of some sample points and expanding the scope of the 
influence domain, which is more accurate than MLS method. 

Fasshauer combines radial basis interpolation and MLS fitting method, and proposes an 
approximate MLS approximation method[13], and applies this method to the study of partial 
differential equations. This method not only takes advantage of the radial basis function but also 
takes into account the advantages of MLS method. After establishing the connection between the 
two, it is not necessary to solve the linear equations. Later, Fasshauer proposed an iterative method 
for the method and proved the necessary and sufficient conditions for its convergence. 

Wendland takes the thin-plate spline function as an example to analyze the error of the radial 
basis function in the sobolev space. Using the spherical surface as the template, MLS approximation 
is obtained [14]. Then Wendland combined the Galerkin method to obtain a meshless method and 
performed error analysis[15]. 

In general, in the data fitting application, the development of MLS method is more to improve 
the accuracy and efficiency of the fitting, and to some extent to compensate for some defects of 
MLS itself. 

4. Advantages of MLS 
LS method is the most commonly chosen method for data fitting, and usually uses a polynomial 

function or a low-order piecewise function to construct a fitting function. When using a polynomial 
function, increasing the polynomial order appropriately can improve the fitting effect, but the ill-
posed equation will appear when fitting, affecting the fitting effect, and even lead to the equation 
solving failure; when using the low-order piecewise function fitting, first need Set a certain strategy 
to hardly divide the scatter into several parts, and then use each of the parts to fit LS method. This 
method avoids the data oscillation that may occur in the polynomial fitting and greatly reduces the 
risk of the ill-posed equation. However, the continuity and smoothness of the fitted data are affected 
by segmentation[16]. 

Compared with LS method, MLS method has the similar localization processing ability as the 
piecewise function due to the introduction of the concept of compactness. It solves the 
shortcomings of segmentation, and the data local fitting precision is higher, which ensures the 
continuity of the fitted data, and the function image is smoother. Meanwhile, the coefficient vector 
of basis functions and a combination of modes, solve LS method, the selection and combination of 
various types of experience required basic function dependencies fitting function design, 
significantly reduce the difficulty of fitting function design. Changing the basis function and weight 
function can flexibly adjust the data fitting effect. The order of the basis function can affect the 
fitting precision. Different weight functions can affect the smoothness of the fitted image. The 
weight function is only related to the calculation point and the nodes in the support domain. When 
the point is changed, the calculated coefficient vector will also change. 

For other improved LS methods, such as weighted LS, the method also uses the concept of 
weight function, except that the weighted LS weight function range is defined in the entire node 
space, and the weight and node coordinates There is no functional relationship. For each node to be 
calculated, it is calculated by the weighted value of all known nodes[17]. When the weight function 
range of the weighted LS method is reduced to a subfield in the node space, the weight is set to a 
function related to the node coordinates, that is, MLS method. It can be seen that MLS method is 
more affected by the nodes in the local area than the weighted LS method, and the reflection of the 
local data features is more accurate. 

Compared with other meshless function forming methods that can be used for data fitting, such 
as smooth particle method, unit decomposition method, reconstructed kernel particle method and 
radial basis function method, the values fitted by MLS method Higher precision, this feature is 
unmatched by other methods[18]. 
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5. Defect of MLS 
5.1 Inherent Defect 

MLS method achieves a large optimization of the data fitting effect based on LS method, but 
since it is essentially an improvement of LS method, it also retains the inherent defects of LS 
method, that is, it is easy to form Morbid or singular equations. The occurrence of this defect is 
usually related to factors such as too high a base function order, too few nodes in the support 
domain, and too small a support domain. It can be processed quickly by the basis function reduction 
and the amplification support domain, but at the same time, partial fitting will be lost. In addition, 
some studies have adopted the weighted orthogonal function as the basis function[19]. This method 
avoids the step of finding the inverse of the matrix in the method, and it is not easy to form the ill-
posed equations, but the basis function is more complicated, and the problem is not completely 
solved[20]. 

5.2 Influence Radius And Weight Function Selection 
In MLS method, the influence radius and the weight function have a great influence on the fitting 

effect. How to choose the appropriate support domain radius and weight function for the fitted data 
is a difficult problem in actual use. The radius of influence is the radius of the support domain. 
When the radius r is too small, the matrix generated by the method may be irreversible or even 
morbid, resulting in inaccurate or even incomprehensible fitting results. When r is too large, there 
are more nodes in the support domain, and the calculation amount is large. Can not effectively 
reflect the characteristics. The weight function largely determines the smoothness of the data-fitted 
image. 

The REFERENCE [21] discusses the selection of the influence radius and the weight function, 
and puts forward some suggestions: 

When the order of the basis function is high, in order to ensure that the equations are solvable 
during the fitting, the support domain needs to contain more linearly independent nodes, that is, a 
larger influence radius. For the selection of the influence radius, when the nodes are evenly 
distributed, the radius can be dynamically determined by setting the unit length of the node 
distribution and the number of base functions and the number of nodes adjacent to the node to be 
sought. 

For the weight function, to ensure that the fitting function is continuous, a smooth continuous 
function is required. The researchers have proposed a number of expressions of weight functions to 
choose from, including exponential functions, logarithmic functions, Gaussian functions and spline 
functions, etc., commonly used as spline functions. The form and order of the weight function are 
different, and the resulting fitting effect will be different. In general, the higher the order of the 
weight function of the same kind, the better the fitting accuracy. When the precision is high, the 
accuracy improvement caused by using higher order weight functions will not be obvious, but the 
amount of calculation will be larger. Therefore, in actual use, the determination of the order of the 
weight function requires a trade-off between accuracy and computation. 

5.3 Uneven Distribution of Nodes 
The data fit validity of MLS method depends on the local nodes. When the nodes are evenly 

distributed, MLS method can well characterize local features. However, in actual use, there is a 
situation in which the data distribution is uneven. For such cases, MLS method may not be able to 
solve the fitting value of the data sparse region under the premise of ensuring high-precision fitting 
in the dense data region, resulting in a fitted image. There are no value areas such as breakpoints 
and voids, and abnormally large or very small data is generated in the vicinity of the valueless area, 
which is inconvenient for data analysis work. At present, there is no targeted solution to this 
problem, which needs further study. 
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6. Conclusion 
This paper expounds the principle of MLS method, enumerates the improvement of MLS 

method by researchers at home and abroad in recent years, and summarizes the advantages of MLS 
method in data fitting application compared with other data fitting methods. The problem with the 
use of MLS method is explained. 

MLS method and its various improvement methods play an important role in data fitting and 
meshless method research. At present, there are few studies on the mathematical theory, 
convergence, error analysis and performance comparison of MLS method and its improved methods. 
In addition, for the problem that the ill-posed equations of MLS method are difficult to solve, the 
influence radius and the weight function are selected, the solutions proposed by the researchers still 
have certain limitations, and further research is needed. 
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